matematik-2c-ht17:detaljplan

1.1 1.2 1.3 2.1 2.2 2.3 2.4 3.1 3.2 3.3 4.1 4.2 4.3 4.4

1.1 Repetition av algebra och funktioner

Räkna med algebraiska uttryck, ekvationer och omskrivning av formler (sid 8-13)

Detta ska var känt i princip men viss uppfriskning kanske kan behövas. Det tar man ansvar för själv.

Lös b- och c-uppgifterna. Skulle detta gå obra backar man till a-uppgifterna och gör efter behov.

Funktionsbegreppet (14-17)

Funktionsnotation kan kännas abstrakt vid första anblick. Men det är bara att ta tjuren vi hornen och börja vänja sig.

Notationen $f(x)=2x$ är mycket praktisk men också möjlig att missförstå. Väsentligt är att notera att x är en "dummy". Man kan presentera samma funktion som

(1)
\begin{align} f(t)=2t \textrm{ eller } f(\square)=2 \cdot \square \end{align}

där man i det sistnämnda fallet kan peta in vad som helst i rutan. Alltså får man t.ex.

(2)
\begin{align} & f(w)=2w\\ & f(x^2)=2x^2\\ & f(x+1)=2(x+1)=2x+2\\ & f(f(x))=2f(x)=2(2x)=4x, \textrm{ här "kör" man alltså f två gånger efter varandra} \end{align}

Lös uppgifter efter behov. Man kan börja med b- och c-uppgifterna och om dessa går bra känna sig nöjd, och annars "backa".

1.2 Räta linjens ekvation

Inledning (20-22)

En rät linje (som inte är vertikal!) kan skrivas på formen

(3)
\begin{equation} y=kx+m \end{equation}

för givna tal k och m. Kolla själv in graferna i boken eller (ännu hellre) ladda ner GeoGebra här GeoGebra och undersök själva.

Lös väldigt få :-). Detta är relativt enkla uppgifter om man förstått koppling mellan "uttryck och utseende".

En formel för linjens lutning (sid 23-26)

Givet två punkter finns exakt en rät linje som går genom dessa. För att bestämma linjens ekvation på formen

(4)
\begin{equation} y=kx+m \end{equation}

är det oftast enklast att börja med k-värdet, genom

(5)
\begin{align} k=\frac{\Delta y}{\Delta x} = \frac{\textrm{ändring i y-led}}{\textrm{ändring i x-led}} \end{align}

När väl k är bestämt sätter man in en punkt (vilken som helst) i linjen ekvation och räknar ut m.

Anders Karlsson (mattelärare vi Ållebergsgymnasiet i Falköping) har lagt upp en radda YouTubeklipp om olika delar av gymnasiematematiken. Kolla gärna in!

Matteskolan: Rita linje från ekv. y=kx+m, "trappstegsmetoden"

Lös, eller ha koll på, samtliga a-uppgifter. Lös dessutom 1226, 1227a, 1229, 1230 samt 1231 och de båda c-uppgifterna..

Parallella och vinkelräta linjer (sid 28)

Att två linjer är parallella precis om de har samma lutning och dämed samma k-värde är närmast självklart. Sambandet mellan lutningarna hos två vinkelräta linjer kräver lite eftertanke. Som ni ser i boken så kan man illustrera det genom att rotera en lämplig triangel 90 grader och hålla koll på vad som händer med sidlängderna.
"Extraläraren" Anders har några instruktiva YouTube-klipp

Matteskolan: Vinkelräta linjer, "k-form", ex 1
Matteskolan: Vinkelräta linjer, "k-form", ex 2
Matteskolan: Parallella linjer på allmän form, härledning och exempel

Lös 1235, 1236, 1239 och 1240.

k-form och enpunktsform (sid 29-31)

Boken presenterar två metoder för att bestämma linjens ekvation utifrån k-värdet och en punkt på linjen. Det räcker att behärska den ena. I själva verket kan man säga att metoderna är två sidor av samma mynt.

Notera att de två c-uppgifterna 1257 och 1258 finns lösta här; Lösta uppgifter. Efter önskemål fylls det på med lösningar av de lite svårare problemen (som inte hinner behandlas på tavlan).

Lös a-uppgifter efter behov. Troligen kan ni börja direkt på 1249, 1250, 1254, 1256, 1257 (brukar uppfattas som svår) och 1258 och hoppa över a-uppgifterna.

Linjära modeller (sid 33-35)

Ingen ny matematik här. Det handlar om att koppla sin kunskap om räta linjer och deras ekvationer till tillämpade problem.

Lös 1266, 1268, 1270, 1271, 1273, 1274.

Mer om räta linjer (sid 38-40)

Man kan ju tycka att det kan räcka med att presentera linjers ekvation på s.k. k-form:

(6)
\begin{equation} y=kx+m. \end{equation}

Särskilt lämplig är denna form då man ska rita grafen i ett koordinatsystem. I andra sammanhang kan det dock vara bättre med den så kallade allmänna formen:

(7)
\begin{equation} Ax+By+C=0. \end{equation}

Ett skäl är att man också kan uttrycka vertikala linjer på denna form (tag B=0). Senare i livet kanske ni stöter på problem i högre dimensioner (t.ex. plan i 3D). Även då är ofta den allmänna formen att föredra eftersom den är "symmetrisk".

Matteskolan: Räta linjens ekv. allmän form

Lös 1279ab, 1280, 1281cd, 1284, 1285ab, 1287, 1289, 1291 samt 1293 och 1294 om man har högre ambition.

Linjär anpassning (sid 41-42)

Här handlar det om att, på bästa sätt (vilket det nu är), anpassa en rät linje efter ett antal punkter. Ni kommer att stöta på detta "problem" i tillämpade ämnen då ni gjort en massa mätningar i en som ni misstänker linjär modell.

På sida 41 ser ni hur man "väljer" sin bästa linje. Man mäter avståndet från linjen till punkterna i y-led, kvadrerar dessa avstånd och väljer linje så att summan av dessa kvadrater blir minimal. Varför man gör på detta sätt och hur sedan räkningarna går till ligger utanför kursens ramar (ni får reda på hur det funkar i en kurs i Linjär algebra t.ex.). Vi nöjer oss istället med att utföra den linjära anpassningen med räknare och GeoGebra som laddas ner här; GeoGebra. På lektionen får ni reda på hur det fungerar. Ni kan också kolla in Youtube-klippet nedan, som iofs är till en äldre GeoGebraversion.

Youtube: regressions

Lös 1298 och eventuellt 1299, båda med GeoGebra.

1.3 Linjära ekvationssystem

Grafisk lösning (sid 43-45)

Linjära ekvationssystem är vad det låter som, ett antal (två här) linjära ekvationer med ett antal obekanta variabler (som ofta ska bestämmas). Systemen kan lösas såväl grafiskt som algebraiskt, och i första avsnittet är det fråga om just grafisk lösning. Var och en av de linjära ekvationerna i systemet svarar grafisk mot en linje, som man ritar. Att sedan lösa ekvationssystemet betyder att man ska hitta x- och y-värden (ofta heter variablerna just x och y men det går så klart bra med andra) som uppfyller ekvationerna i systemet och grafiskt motsvarar detta punkter som ligger på båda linjerna, dvs. skärningspunkter. Man läser helt enkelt av denna/dessa.

Lös uppgifter efter behov, tills ni har koll. Det är fritt fram med GeoGebra men se till att ni kan rita för hand om ni måste.

Substitutionsmetod (sid 46-47), additionsmetod (48-49)

Detta är två olika metoder för att lösa ekvationssystem algebraiskt (och exakt). I princip räcker det att ni behärskar den ena. Om man stöter på större ekvationssystem är nog additionsmetoden att föredra men för mindre system är substitutionsmetoden lika bra och kanske begripligare. Lös någon uppgift med vardera sort, men välj sedan den metod ni tycker är bäst.

Kolla gärna in Anders Karlsson. Det han kallar elimination är det som boken kallar additionsmetod.

Matteskolan: Linjära ekvationssystem, substitution, exempel
Matteskolan: Linjära ekvationssystem, elimination, exempel

Lös på sida 47: (med substitutionsmetod), 1317cd, 1318, 1321b, 1323, 1325, 1326.
Lös på sida 49: (med additionsmetod), 1330b, 1333b, 1335, 1336c, 1338, 1340.

Några speciella ekvationssystem (sid 50-51)

Vad boken menar med ett speciellt ekvationssystem verkar oklart, men själva presentationen av de olika fall som kan inträffa (på sid 50) är bra. Tänk efter så att ni förstår "sambandet" mellan den algebraiska lösningen och den grafiska tolkningen.

Lös 1343, 1345 och c-uppgifterna (rita gärna lite i GeoGebra också).

Ekvationssystem med tre obekanta (sid 52-53)

Avsnittet är inte så upphetsande, man lägger till en ekvation och en obekant i ekvationssystemet. Lösningsmetoden är dock densamma. Man löser ut en "bokstav"/obekant i en rad, substituerar i de båda andra och vips har man ett system med två ekvationer och två obekanta. Detta löses som innan. Det alltså inte så svårt i princip men det blir ganska mycket räkningar så man får vara lite noggrann.

Det går utmärkt att göra geometriska tolkningar också av dessa större ekvationssystem, men det ligger utanför denna kursens ramar. I en framtida kurs i Linjär algebra kommer ni att se hur det hänger ihop.

Lös 1351c, 1352c, 1353, 1354, 1355 och 1358.

Tillämpningar och problemlösning (sid 54-56)

Ingen ny matematik här. Däremot gäller det oftast att översätta svenska till matematiska (här snickra och lösa ekvationssystem). Några tips/måsten

  • om ni själva inför beteckningar/variabler så måste dessa förklaras.
  • även om ni i vissa fall kan göra en snabb och fiffig huvudräkningslösning, undvik det här eftersom poängen är att träna just organiserad och metodisk lösningsteknik. Och ibland blir fiffiga lösningar korrekta men svåra att begripa/följa.

Lös 1367, 1369, 1371, 1374, 1375.

Extraproblem


$f$ är en linjär funktion sådan att $f(2013) – f(2001) = 100$. Bestäm $f(2031) – f(2013)$.


Determine $3x_4+2x_5$ if $x_1, x_2, x_3, x_4$, and $x_5$ satisfy the system of equations below.

(8)
\begin{cases} 2x_1+x_2+x_3+x_4+x_5=6 \\ x_1+2x_2+x_3+x_4+x_5=12 \\ x_1+x_2+2x_3+x_4+x_5=24\\ x_1+x_2+x_3+2x_4+x_5=48\\ x_1+x_2+x_3+x_4+2x_5=96 \end{cases}

Lös ekvationssystemet

(9)
\begin{align} \left\{ \begin{array}{r r r} x^y & = & 2\\ (2x)^{y^2} & = & 64 \end{array} \right. \end{align}

$x > 0$.


2.1 Polynom

Vad är ett polynom, räkna med polynom (sid 72-74)

Varför bör man veta vad ett polynom är? Det är såklart praktiskt om man i ett ord kan fånga vissa typiska och intressanta egenskaper, och dessutom använda ett ord som alla (i hela världen) förstår. Det underlättar och effektiviserar kommunikation. Ni kommer också att stöta på metoder för t.ex. ekvationslösning och derivering. För polynom gäller vissa "regler" och texten inleds ofta med "Om p(x) är ett polynom så gäller att …". Om man inte har ett polynom är det inte säkert "regeln" fungerar så det är säkrast att ha full koll på polynombegreppet. Här kommer det!

Potenser av x, med icke-negativa heltal i exponenten, är

$$x^0=1, x,x^2, x^3, x^4, \ldots$$

Om man bildar summor och differenser av sådana x-potenser får man polynom. T.ex. $x+1, 2x^2-3x+7, x^8-6x^7+x^5-x^3+2x-8.$

Graden på den "högsta" förekommande x-potensen anger polynomets grad. I raden ovan är det alltså frågan om polynom av grad ett, två och åtta. Observera att polynomet $$x-2x^2+1$$ är av grad två. Man måste alltså lokalisera högsta x-potensen.

Talen framför x-potenserna kallas koefficienter. I polynomet $2x^2-3x+7$ är koefficienten för $x^2$-termen 2, koefficienten för x-termen -3 och konstanten 7.

Man kallar ofta polynomen för p(x), så t.ex. $p(x)= 2x^2-3x+7$. Om vi vill beräkna värdet av polynomet för t.ex. x=2 ersätter vi helt enkelt x med 2 i uttrycket och skriver

$$p(2)=2 \cdot 2^2-3 \cdot 2 +7 =9.$$

Själva räknandet med polynom är inget nytt.

Lös b- och c-uppgifterna. En del känns nog igen från tidigare.

Konjugat och kvadreringsregler (sid 76-78), Faktorisera (sid 79-80)

Vissa speciella ''parentesmultiplikationer" kan man snabba upp med reglerna i rubriken. Det är inget konstigt och råkar man glömma är det bara att utföra "ihopmultiplikationen". Vi har t.ex.

$$(a+b)(a-b)=a^2-ab+ba-b^2 = a^2-b^2$$

Sambandet

$$(a+b)(a-b)= a^2-b^2$$

kallas konjugatregeln och är värt att lägga på minnet. Kvadreringsregeln (finns egentligen bara en!) säger att

$$(a+b)^2=a^2+2ab+b^2 $$

Om b väljs negativt får man bokens andra kvadreringsregel.

Att använda reglerna åt ena hållet är lätt. Lite svårare blir det om man vill rekonstruera parenteserna. T.ex är faktorisering av

$$4x^2-12xy+9y^2$$

inte så lätt. Med lite eftertanke och vana inser man kanske att

$$4x^2-12xy+9y^2 = (2x-3y)^2.$$

Att gå åt vänster i likheten ovan är ganska lätt, att gå åt höger är svårare.

Lös 2124a, 2128a, 2129cd, 2130a och c-uppgifterna på sid 77-78. Lös 2144cd, 2146cd, 2147bd, 2148b och c-uppgifterna på sid 80.

2.2 Andragradsekvationer

Enkla andragradsekvationer (sid 82-83)

Ni har sett liknande i Ma1c, i det avsnitt som hette "Enkla x^2-ekvationer" så en del bör kännas igen, men kanske behöver friskas upp. Kom ihåg att

  • när man löser ekvationer vill man bara se x på ett ställe. Förstör inte "ett sådant läge".
  • om en produkt är noll måste minst en av faktorerna vara noll. Förstör inte en produkt som är lika med noll.
  • ekvationen $x^2 = 4$ har lösningen $x=\pm \sqrt 4 = \pm 2$ och minns att alltså $\sqrt{4} = 2$ och INTE $-2$.

Lös b- och c-uppgifterna.

Kvadratkomplettering (sid 84-85)

Taktiken för att lösa allmänna andragradsekvationer är att utföra kvadratkomplettering, som i princip innebär att man ser till så det obekanta (ofta x) endast finns på ett ställe. När ni löser ekvationen $5x-3x=4$ är första steget att samla ihop x:en och få $2x=4$. I den sista ekvationen finns bara x på ett ställe och det är dags att "städa" runt x:et.

Betrakta nu andragradsekvationen

$$x^2+4x-5=0$$

Hur få x på ett ställe enbart? Jo, vi "kör" kvadreringsregeln baklänges och fixar till så konstanten stämmer:

$$x^2+4x-5 = (x+2)^2-4-5= (x+2)^2-9=0$$

Denna omskrivning kallas kvadratkomplettering (se bok sid 84 för en geometrisk tolkning och här för en artikel i Wikipedia). När x bara finns på ett ställe "städar vi":

$$(x+2)^2-9=0 \Leftrightarrow (x+2)^2=9 \Leftrightarrow x+2=\pm \sqrt{9} = \pm 3 \Leftrightarrow x=-2 \pm 3$$

Tydligen har ekvationen lösningarna x=1 och x=-5.

Vill du ser mer kvadratkompletteringar, kolla i Anders Karlsson. I det andra klippet visar han lite svårare exempel.

Matteskolan: Kvadratkomplettering av andragradsekvationer
Matteskolan: Andragradsekvationer med kvadratkomplettering

Även Norman Wildberger har ett par klipp om kvadratkomplettering. De ingår i hans serie Math Foundations. I denna finns mycket annat intressant så botanisera gärna.

Wildberger: Solving a quadratic equation, part a
Wildberger: Solving a quadratic equation, part b

Lös 2212, 2215, 2216, 2218b, 2219, 2220 och 2221b.

En lösningsformel (sid 86-88)

Man orkar inte kvadratkomplettera varje gång (eller det gör man kanske?). Istället kan man säga att man gör det en gång för alla och presenterar slutresultatet som en färdig formel. Resultatet (lösningsformeln) dyker upp på sida 86. Den står också på formelbladet som man får ha med på alla prov. Alltså är det inte jätteviktigt att lära utantill. Däremot måste man känna igen problem där den kan användas och kunna utföra aktuella räkningar (bråkräkning, kvadratrötter etc.). Om man siktar mot de högre betygen bör man så småningom kunna utföra och förstå härledningen på sida 86.

Lös 2225ac, 2226, 2231, 2232, 2233c, 2234, 2235a, 2236 och 2238.

Tillämpningar och problemlösning (sid 90-91)

Här gäller det att tolka eller översätta en text eller en figur till "matematiska". Det kommer oftast att leda till en andragradsekvation, som man löser med tekniker som man lärt sig tidigare. Till sist (som man alltid gör i textuppgifter) bedömer man rimligheten hos sitt svar, läser frågan i texten och skriver ett svar på frågan. Det är lätt hänt att man räknar rätt men glömmer att svara på den fråga som ställdes.

Lös eller ha koll på samtliga a-uppgifter. Lös dessutom 2246, 2247 och 2248. Uppgift 2249 är iofs mycket intressant men kan ändå hoppas över. Särskilt intressant blir det om man kan lista ut samtliga heltal som "fungerar" i Pythagoras sats.

Mer om ekvationer (sid 94-97)

På dessa sidor förekommer några "varianter" av ekvationer, huvudsakligen rotekvationer och ekvationer som man löser med fiffig substitution.

Vid lösning av rotekvation behöver man nästan alltid "kvadrera" bort roten vid lämpligt tillfälle. Då måste man ha klart för sig att det samtidigt kan dyka upp falska lösningar (dock kan inga lösningar försvinna). För att se om man fått några falska lösningar kontrollerar man helt enkelt de lösningar man får genom insättning i den ursprungliga ekvationen. De lösningar som stämmer är korrekta, de andra förkastas.

Genom substitution kan man återföra ekvationer som kanske ser lite halvläskiga ut på sådana som man känner igen. Betrakta t.ex.

(10)
\begin{equation} (x^2+5)^2-15(x^2+5)+54 =0 \end{equation}

Det är iofs en fjärdegradsekvation men man noterar att varje gång x:et förekommer så förekommer det i "paketet" $x^2+5$. Aha, vi ersätter $x^2+5$ med t och får då

(11)
\begin{equation} t^2-15t+54 =0 \end{equation}

Här är det en smal sak att bestämma t. Sedan använder man sambandet $t=x^2+5$ för att till sist bestämma x:en.

Lös 2252d, 2257 (b med GeoGebra), 2258c, 2260bc, 2262c, 2263a, 2264b och 2265b.

Komplexa tal - en introduktion (98-100)

Komplexa tal är mycket användbara såväl inom matematik som inom tillämpningar. Matematiken "runt" de komplexa talen är också oerhört vacker (enligt mig). Inget av detta kan illustreras på ett par sidor så istället blir det fråga om att räkna på som vanligt med tillägget att vi hittar på att $\sqrt{-1}$ är ett acceptabelt tal, som vi kallar i. Ekvationen

(12)
\begin{equation} z^2-4z+13=0 \end{equation}

har med pq-formel lösningarna (formeln fungerar som vanligt)

(13)
\begin{align} z=2 \pm \sqrt{-9} = 2 \pm \sqrt{9} \cdot \sqrt{-1} = 2 \pm 3i \end{align}

om vi tillåter talet i.

Tal på formen $a+bi$ kallas komplexa tal och man räknar med dem precis som vanligt med tillägget att $i^2 = -1$, dvs när det dyker upp $i^2$ kan detta ersättas med -1. I $a+bi$ kallas a för realdelen och b för imaginärdelen. Man kan representera komplexa med punkter i ett koordinatsystem (komplext talplan), se sid 99 för en illustration.

Lös 2268, 2269, 2270cd, 2271c, 2272, 2273b och 2274.

2.3 Andragradsfunktioner

Andragradsfunktionens graf, största och minsta värde (sid 102-109)

Här handlar det om att begripa sig på grafen till andragradsfunktionen $y=f(x)=ax^2+bx+c$ och vad detta har att göra med t.ex. tidigare lösning av andragradsekvationer.

Vill man ha en extra tavel genomgångar rekommenderas nedanstående YouTubeklipp med Anders Karlsson.

Matteskolan: Andragradsfunktionens graf, inledning
Matteskolan: Andragradsfunktioner, kvadratkomplettering
Matteskolan: Andragradsfunktioner: symmetrilinje och max eller min
Matteskolan: Andragradsfunktionens graf, forts.

Lös på a-nivå (görs av alla): 2303, 2304, 2306, 2307, 2316, 2317, 2320, på b/c-nivå (görs av de som önskar, vilket bör vara alla :-)): 2309b, 2311, 2313, 2322, 2324, 2327, 2330, 2331, 2332

Tillämpningar (sid 110-112)

Ingen ny matematik, istället läsa text, "matematisera" densamma och använda tidigare kunskaper för lösning.

Lös 2334, 2335, 2337 och (eller) 2338, 2340, 2342.

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License